Pure Mathematics P1

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Pure Mathematics P2

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n} \qquad (n \in \mathbb{N})$$
where $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{1 \times 2}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r}x^r + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Numerical integration

The trapezium rule:
$$\int_a^b y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b-a}{n}$

Pure Mathematics P3

Candidates sitting Pure Mathematics P3 may also require those formulae listed under Pure Mathematics P1 and P2.

Logarithms and exponentials

$$e^{x \ln a} = a^x$$

Trigonometric identities

$$\sin(A \pm B) \equiv \sin A \cos B \pm \cos A \sin B$$

$$cos(A \pm B) \equiv cos A cos B \mp sin A sin B$$

$$\tan(A \pm B) \equiv \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \qquad \left(A \pm B \neq \left(k + \frac{1}{2}\right) \pi\right)$$

$$\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

Differentiation

$$f'(x)$$

$$\tan kx$$

$$k \sec^2 kx$$

$$\sec x \qquad \sec x \tan x$$

$$\cot x \qquad -\csc^2 x$$

$$\csc x \qquad -\csc x \cot x$$

$$\frac{f(x)}{g(x)} \qquad \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Integration (+ constant)

$$\int \mathbf{f}(x) \ \mathbf{d}x$$

$$\sec^2 kx \qquad \frac{1}{k} \tan kx$$

$$\tan x$$
 $\ln |\sec x|$

Pure Mathematics P4

Candidates sitting Pure Mathematics P4 may also require those formulae listed under Pure Mathematics P1, P2 and P3.

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{1 \times 2}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r}x^r + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Integration (+ constant)

$$\int f(x) \qquad \int f(x) dx$$

$$-\ln|\csc x + \cot x|, \quad \ln|\tan\left(\frac{1}{2}x\right)|$$

$$\sec x$$
 $\ln |\sec x + \tan x|$, $\ln \left|\tan \left(\frac{1}{2}x + \frac{1}{4}\pi\right)\right|$

$$\int u \, \frac{\mathrm{d}v}{\mathrm{d}x} \, \mathrm{d}x = uv - \int v \, \frac{\mathrm{d}u}{\mathrm{d}x} \, \mathrm{d}x$$

Mechanics M1

There are no formulae given for M1 in addition to those candidates are expected to know.

Candidates sitting M1 may also require those formulae listed under Pure Mathematics P1 and P2.

Mechanics M2

Candidates sitting M2 may also require those formulae listed under Pure Mathematics P1, P2, P3 and P4.

Centres of mass

For uniform bodies:

Triangular lamina: $\frac{2}{3}$ along median from vertex

Circular arc, radius r, angle at centre 2α : $\frac{r\sin\alpha}{\alpha}$ from centre

Sector of circle, radius r, angle at centre 2α : $\frac{2r\sin\alpha}{3\alpha}$ from centre

Mechanics M3

Candidates sitting M3 may also require those formulae listed under Mechanics M2, and Pure Mathematics P1, P2, P3 and P4.

Motion in a circle

Transverse velocity: $v = r\dot{\theta}$

Transverse acceleration: $\dot{v} = r\ddot{\theta}$

Radial acceleration: $-r\dot{\theta}^2 = -\frac{v^2}{r}$

Centres of mass

For uniform bodies:

Solid hemisphere, radius r: $\frac{3}{8}r$ from centre

Hemispherical shell, radius r: $\frac{1}{2}r$ from centre

Solid cone or pyramid of height h: $\frac{1}{4}h$ above the base on the line from centre of base to vertex

Conical shell of height h: $\frac{1}{3}h$ above the base on the line from centre of base to vertex

Universal law of gravitation

Force =
$$\frac{Gm_1m_2}{d^2}$$